e content for students of patliputra university

B. Sc. (Honrs) Part 2paper 3

Subject: Mathematics

Title/Heading of topic:Sub group, intersection of sub groups, Subgroup of cycle groups

By Dr. Hari kant singh

Associate professor in mathematics

Rrs college mokama patna

SUBGROUPS

Definition 2 - 1.

Let (G, *) be a group and $H \subseteq G$ be a nonempty subset of G. The pair (H, *) is said to be a SUBGROUP of (G, *) if (H, *) is group. Example.

(Z,+) is subgroup of (R,+).

Note.

Each group (G,*) has at least two subgroups.

({e},*) and (G,*) are subgroups of (G,*), these two subgroups are called trivial subgroups.

Exercise.

- 1) Find all subgroups of the group $(Z_8, +_8)$.
- 2) Find all subgroups of (S_3, o) and (S_4, o) .

Theorem 2-1.

Proof.

Let (G, *) be a group and $^{\phi} \neq H \subseteq G$. Then (H, *) is a subgroup of (G, *) if and only if $a, b \in H$ implies $a * b^{-1} \in H$.

If (H,*) is a subgroup and a, b∈ H,

then $b^{-1} \in H$,

So $a * b^{-1} \in H$?

Conversely,

```
H ≠¢
  Since a * b^{-1} \in H whenever a, b \in H,
  So we can take a = b.
 Then b * b^{-1} = e \in H.
  b^{-1} = e^* b^{-1} \in H for every b in H.
  a^* b = a^* (b^{-1})^{-1} \in H?
   hence H is closed.
   If a, b, c \in H, then a, b, c \in G.
   a^*(b^*c)=(a^*b)^*c?
        is associative on H.
   Hence (H,*) is subgroup.
Theorem 2-2.
     The intersection of two subgroups of the group is subgroup.
 Proof.
     Suppose that (H,*) and (K,*) are subgroups of group (G,*).
  We must prove that (H \cap K,^*) is subgroup.
   Since (H, *) and (K, *) are subgroups,
  Then \exists e \in H and e \in K
  Hence e \in H \cap K.
         H \cap K \neq \emptyset.
  So
  If a,b \in H \cap K, then a,b \in H and a,b \in K,
 Hence a * b^{-1} \in H and a * b^{-1} \in K.
  So a * b<sup>-1</sup>\in H \capK.
```

```
Definition 2-2.
      Let (G,*) be group, (G,*) is called commutative group if and
   only if,
      a^* b = b^* a
                          for all a, b \in G.
Example 1.
        (R,+) is commutative group, for
    a+b=b+a for all a,b \in R.
Example 2.
      (S_3, o) is not commutative group.
Definition 2-3.
     The center of a group (G,*), denoted by cent G, is the set
    cent G = \{c \in G \mid c^* x = x * c \text{ for all } x \in G \}.
 Example 1.
       Find center of the group (Z, +).
        If n \in Z,
                 n+m=m+n for all m \in Z.
     Then
           cent Z = Z
     So
Example 2.
    cent S_3 = \{ e \}.
 Exercise.
     Find cent Z_8.
Note.
    For any group (G, *), cent G \neq \emptyset.
```

Theorem 2-3. (cent G, *) is subgroup of each group (G, *). Proof. cent $G \neq \emptyset$. If a, b \in cent G, then for every $x \in G$, $a^* x = x^* a$ and $b^* x = x * b$. $(a*b^{-1})*x = a*(b^{-1}*x)$ $= a *(x^{-1} * b)^{-1}$ $= a * (b* x^{-1})^{-1}$ $= a *(x*b^{-1})$ $= (a*x)*b^{-1}$ $= (x * a) * b^{-1}$ $= x * (a * b^{-1})$ Hence $a * b^{-1} \in cent G$. So (cent G, *) is subgroup.

Exercise.

Is the union of two subgroups group?

H.W.

```
Let (H_1,^*) and (H_2,^*) be subgroups of the group (G,^*). (H_1UH_2,^*) is also subgroup
   and Only if H_1 \subseteq H_2 or H_2 \subseteq H_1.
Proof .
        Suppose that (H_1 \cup H_2, *) is subgroup, we must prove that H_1 \subseteq H_2 or H_2 \subseteq H_1.
     If H_1 \subseteq H_2 and H_2 \subseteq H_1.
    Then \exists a \in H_1 - H_2 and b \in H_2 - H_1.
    If a^* b \in H_1, then,
       b = a^{-1}* (a *b) \in H_1,
    which is contradiction.
   If a * b \in H_2, then,
          a = (a * b) * b^{-1} \in H_2,
   which is contradiction.
   Hence H_1 \subseteq H_2 or H_2 \subseteq H_1.
   Conversely, suppose that,
    H_1 \subseteq H_2 or H_2 \subseteq H_1, we must prove that (H_1 \cup H_2, *) is subgroup.
  If H_1 \subseteq H_2, then H_1 \cup H_2 = H_2,
  then (H_1UH_2,*) is subgroup.
  If H_2 \subseteq H_1, then H_1 \cup H_2 = H_1,
  then (H_1 \cup H_2, *) is subgroup.
Example.
       If (Z_{12}, +_{12}) is a group,
    (H_1 = \{ [0], [3], [6], [9] \}, +_{12}) and (H_2 = \{ [0], [6] \}, +_{12}) are subgroups of (Z_{12}, +_{12})?
     Then
                      H_1 U H_2 = H_1.
                    H_3 = \{ [o], [4], [8] \}.
     But if
```

Theorem 2-4.

 $(H_1UH_3, +_{12})$ is not subgroup?

Then

Definition 2-4.

If (G, *) is an arbitrary group and $^{\phi}\neq S\subseteq G$, then (S) will represent the set, $(S) = \bigcap\{H \mid S\subseteq H; (H, *) \text{ is a subgroup of } (G, *)\}.$

Note .

((S),*) is a subgroup of (G,*).

Definition 2-5.

Let(G,*) be a group , the subgroup ((S),*) is called the subgroup generated by the set S.

Example .

(Z,+) is generated by $(Z_0,+)$.

Note.

If S consists of a single element a, then ((a),*) is called the cyclic subgroup generated by a.

(a) =
$$\{a^n | n \in Z\}$$
.

Definition 2-6.

A group is cyclic means that each of its members can be expressed as an integral power of some fixed element of the group.

Example 1.

 $(Z_{10}, +_{10})$ is cyclic group.

Example 2.

 (S_3, o) is not cyclic group.

Definition 2-7.

The ORDER of a group is the number of its elements.

Theorem 2-5.

If ((a), *) is a finite cyclic group of order n, then

(a) = { e, a,
$$a^2$$
, a^3 , ..., a^{n-1} }.

Proof.

Since (a) is finite, then not all powers of a are distinct.

 $\exists a^i = a^j \quad i < j$.

Then $a^{i*} a^{-i} = a^{j*} a^{-i}$.

 $a^{j-1} = e$.

Thus the set of positive integers k for which $a^k = e$ is nonempty.

Suppose that m is the smallest positive integer such that $a^m = e$ and $a^k \neq e$ for 0 < k < m

The set $S = \{e, a, a^2, ..., a^{m-1}\}$ consiste of distinct elements of (a).

By the division algorithm k = qm + r $o \le r < m$.

Hence $a^k = (a^m)^{q*} a^r = e^* a^r = a^r \in S$.

Then (a) $\subseteq S$.

Hence (a) = S, m = n.

Theorem 2-6.

Every subgroup of a cyclic group is cyclic.

Proof.

Let ((a), *) be a cyclic group generated by a and $(H, *) \subseteq ((a), *)$.

If $H = \{e\}$, then H is cyclic?

If H = (a), then H is cyclic?

If H is proper set and $a^m \in H$ where $m \neq 0$,

Then $a^{-m} \in H$?

Hence, H must contain positive powers of a.

Let n be the smallest positive integer $\ni a^n \in H$.

We must prove that $H = (a^n)$.

Let a^k∈H.

From division algorithm \exists integers q and r \exists K = qn + r $0 \le r < n$.

If r > 0, then contradiction?

then r = o and k = qn.

Hence only powers of $a^n \in H$, then $H \subseteq (a^n)$.

Since H is closed, then any power of an must be in H.

Hence $(a^n) \subseteq H$.

Then $H = (a^n)$.

Definition 2-8.

Let (G,*) be a group and H, K be nonempty subsets of G. The product of H and K, in that order, is the set

$$H*K = \{h*k \mid h \in H, k \in K\}$$

Note .

(H*K,*) is not group always.

Example.

If
$$H = \{R_{360}, D_1\}$$
 and $K = \{R_{360}, V\}$,

Then

H * K = {
$$R_{360}$$
 * R_{360} , R_{360} * V , D_1 * R_{360} , D_1 * V }
$$= \{ R_{360}, V, D_1, R_{270} \}$$

It is clear that H* K not group?

Theorem 2-7.

If (H, *) and (K, *) are subgroups of the group (G, *) such that H*K=K*H, then (H*K, *) is also a subgroup.

Proof.

H* K ≠ 4 ?

Let $a, b \in H^* K$, then $a = h^* k$ and $b = h_1^* k_1$, for suitable choice of $h, h_1 \in H$ and $k, k_1 \in K$ $a^* b^{-1} = (h^* k)^* (h_1^* k_1)^{-1}$ $= (h^* k)^* (k_1^{-1} * h_1^{-1})$

= $h * ((k * k_1^{-1}) * h_1^{-1})$

Since K is subgroup, then $k * k_1^{-1} \in K$ and $(k * k_1^{-1}) * h_1^{-1} \in K * H$

Hence
$$(k * k_1^{-1}) * h_1^{-1} \in H * K ?$$

So $\exists h_2 \in H$ and $k_2 \in K \ni$
 $(k * k_1^{-1}) * h_1^{-1} = h_2 * k_2,$
Then $a * b^{-1} = h * (h_2 * k_2) = (h * h_2) * k_2 \in H * K ?$

Corollary 1.

If (H, *) and (K, *) are subgroups of the commutative group (G, *) then (H*K, *) is again a subgroup.

Corollary 2.

If (H*K,*) is a subgroup of (G,*), then (H*K,*)=((HUK),*).

Exercises